Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A plant-responsive bacterial-signaling system senses an ethanolamine derivative.

Identifieur interne : 001074 ( Main/Exploration ); précédent : 001073; suivant : 001075

A plant-responsive bacterial-signaling system senses an ethanolamine derivative.

Auteurs : Bruna G. Coutinho [États-Unis] ; Emily Mevers [États-Unis] ; Amy L. Schaefer [États-Unis] ; Dale A. Pelletier [États-Unis] ; Caroline S. Harwood [États-Unis] ; Jon Clardy [États-Unis] ; E Peter Greenberg [États-Unis]

Source :

RBID : pubmed:30190434

Descripteurs français

English descriptors

Abstract

Certain plant-associated Proteobacteria sense their host environment by detecting an unknown plant signal recognized by a member of a LuxR subfamily of transcription factors. This interkingdom communication is important for both mutualistic and pathogenic interactions. The Populus root endophyte Pseudomonas sp. GM79 possesses such a regulator, named PipR. In a previous study we reported that PipR activates an adjacent gene (pipA) coding for a proline iminopeptidase in response to Populus leaf macerates and peptides and that this activation is dependent on a putative ABC-type transporter [Schaefer AL, et al. (2016) mBio 7:e01101-16]. In this study we identify a chemical derived from ethanolamine that induces PipR activity at picomolar concentrations, and we present evidence that this is the active inducer present in plant leaf macerates. First, a screen of more than 750 compounds indicated ethanolamine was a potent inducer for the PipR-sensing system; however, ethanolamine failed to bind to the periplasmic-binding protein (PBP) required for the signal response. This led us to discover that a specific ethanolamine derivative, N-(2-hydroxyethyl)-2-(2-hydroxyethylamino) acetamide (HEHEAA), binds to the PBP and serves as a potent PipR-dependent inducer. We also show that a compound, which coelutes with HEHEAA in HPLC and induces pipA gene expression in a PipR-dependent manner, can be found in Populus leaf macerates. This work sheds light on how plant-associated bacteria can sense their environment and on the nature of inducers for a family of plant-responsive LuxR-like transcription factors found in plant-associated bacteria.

DOI: 10.1073/pnas.1809611115
PubMed: 30190434
PubMed Central: PMC6166808


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A plant-responsive bacterial-signaling system senses an ethanolamine derivative.</title>
<author>
<name sortKey="Coutinho, Bruna G" sort="Coutinho, Bruna G" uniqKey="Coutinho B" first="Bruna G" last="Coutinho">Bruna G. Coutinho</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Washington, Seattle, WA 98195.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Department of Microbiology, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mevers, Emily" sort="Mevers, Emily" uniqKey="Mevers E" first="Emily" last="Mevers">Emily Mevers</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Schaefer, Amy L" sort="Schaefer, Amy L" uniqKey="Schaefer A" first="Amy L" last="Schaefer">Amy L. Schaefer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Washington, Seattle, WA 98195.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Department of Microbiology, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pelletier, Dale A" sort="Pelletier, Dale A" uniqKey="Pelletier D" first="Dale A" last="Pelletier">Dale A. Pelletier</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Harwood, Caroline S" sort="Harwood, Caroline S" uniqKey="Harwood C" first="Caroline S" last="Harwood">Caroline S. Harwood</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Washington, Seattle, WA 98195.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Department of Microbiology, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Clardy, Jon" sort="Clardy, Jon" uniqKey="Clardy J" first="Jon" last="Clardy">Jon Clardy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Greenberg, E Peter" sort="Greenberg, E Peter" uniqKey="Greenberg E" first="E Peter" last="Greenberg">E Peter Greenberg</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, University of Washington, Seattle, WA 98195; epgreen@uw.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Washington, Seattle</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30190434</idno>
<idno type="pmid">30190434</idno>
<idno type="doi">10.1073/pnas.1809611115</idno>
<idno type="pmc">PMC6166808</idno>
<idno type="wicri:Area/Main/Corpus">000C71</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C71</idno>
<idno type="wicri:Area/Main/Curation">000C71</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C71</idno>
<idno type="wicri:Area/Main/Exploration">000C71</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A plant-responsive bacterial-signaling system senses an ethanolamine derivative.</title>
<author>
<name sortKey="Coutinho, Bruna G" sort="Coutinho, Bruna G" uniqKey="Coutinho B" first="Bruna G" last="Coutinho">Bruna G. Coutinho</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Washington, Seattle, WA 98195.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Department of Microbiology, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mevers, Emily" sort="Mevers, Emily" uniqKey="Mevers E" first="Emily" last="Mevers">Emily Mevers</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Schaefer, Amy L" sort="Schaefer, Amy L" uniqKey="Schaefer A" first="Amy L" last="Schaefer">Amy L. Schaefer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Washington, Seattle, WA 98195.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Department of Microbiology, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pelletier, Dale A" sort="Pelletier, Dale A" uniqKey="Pelletier D" first="Dale A" last="Pelletier">Dale A. Pelletier</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Harwood, Caroline S" sort="Harwood, Caroline S" uniqKey="Harwood C" first="Caroline S" last="Harwood">Caroline S. Harwood</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Washington, Seattle, WA 98195.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Department of Microbiology, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Clardy, Jon" sort="Clardy, Jon" uniqKey="Clardy J" first="Jon" last="Clardy">Jon Clardy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Greenberg, E Peter" sort="Greenberg, E Peter" uniqKey="Greenberg E" first="E Peter" last="Greenberg">E Peter Greenberg</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, University of Washington, Seattle, WA 98195; epgreen@uw.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Washington, Seattle</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetamides (metabolism)</term>
<term>Acetamides (pharmacology)</term>
<term>Endophytes (metabolism)</term>
<term>Endophytes (physiology)</term>
<term>Ethanolamine (metabolism)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Periplasmic Binding Proteins (metabolism)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Growth Regulators (physiology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Pseudomonas (metabolism)</term>
<term>Pseudomonas (physiology)</term>
<term>Repressor Proteins (metabolism)</term>
<term>Repressor Proteins (physiology)</term>
<term>Trans-Activators (metabolism)</term>
<term>Trans-Activators (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétamides (métabolisme)</term>
<term>Acétamides (pharmacologie)</term>
<term>Endophytes (métabolisme)</term>
<term>Endophytes (physiologie)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Facteur de croissance végétal (physiologie)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Protéines de liaison périplasmiques (métabolisme)</term>
<term>Protéines de répression (métabolisme)</term>
<term>Protéines de répression (physiologie)</term>
<term>Pseudomonas (métabolisme)</term>
<term>Pseudomonas (physiologie)</term>
<term>Racines de plante (microbiologie)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Transactivateurs (métabolisme)</term>
<term>Transactivateurs (physiologie)</term>
<term>Éthanolamine (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetamides</term>
<term>Ethanolamine</term>
<term>Periplasmic Binding Proteins</term>
<term>Plant Growth Regulators</term>
<term>Repressor Proteins</term>
<term>Trans-Activators</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Acetamides</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endophytes</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acétamides</term>
<term>Endophytes</term>
<term>Facteur de croissance végétal</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines de liaison périplasmiques</term>
<term>Protéines de répression</term>
<term>Pseudomonas</term>
<term>Transactivateurs</term>
<term>Éthanolamine</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acétamides</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Endophytes</term>
<term>Facteur de croissance végétal</term>
<term>Protéines de répression</term>
<term>Pseudomonas</term>
<term>Transactivateurs</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Endophytes</term>
<term>Plant Growth Regulators</term>
<term>Pseudomonas</term>
<term>Repressor Proteins</term>
<term>Trans-Activators</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Bacterial</term>
<term>Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes bactériens</term>
<term>Spectrométrie de masse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Certain plant-associated Proteobacteria sense their host environment by detecting an unknown plant signal recognized by a member of a LuxR subfamily of transcription factors. This interkingdom communication is important for both mutualistic and pathogenic interactions. The
<i>Populus</i>
root endophyte
<i>Pseudomonas</i>
sp. GM79 possesses such a regulator, named PipR. In a previous study we reported that PipR activates an adjacent gene (
<i>pipA</i>
) coding for a proline iminopeptidase in response to
<i>Populus</i>
leaf macerates and peptides and that this activation is dependent on a putative ABC-type transporter [Schaefer AL, et al. (2016) mBio 7:e01101-16]. In this study we identify a chemical derived from ethanolamine that induces PipR activity at picomolar concentrations, and we present evidence that this is the active inducer present in plant leaf macerates. First, a screen of more than 750 compounds indicated ethanolamine was a potent inducer for the PipR-sensing system; however, ethanolamine failed to bind to the periplasmic-binding protein (PBP) required for the signal response. This led us to discover that a specific ethanolamine derivative,
<i>N</i>
-(2-hydroxyethyl)-2-(2-hydroxyethylamino) acetamide (HEHEAA), binds to the PBP and serves as a potent PipR-dependent inducer. We also show that a compound, which coelutes with HEHEAA in HPLC and induces
<i>pipA</i>
gene expression in a PipR-dependent manner, can be found in
<i>Populus</i>
leaf macerates. This work sheds light on how plant-associated bacteria can sense their environment and on the nature of inducers for a family of plant-responsive LuxR-like transcription factors found in plant-associated bacteria.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30190434</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>115</Volume>
<Issue>39</Issue>
<PubDate>
<Year>2018</Year>
<Month>09</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>A plant-responsive bacterial-signaling system senses an ethanolamine derivative.</ArticleTitle>
<Pagination>
<MedlinePgn>9785-9790</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1809611115</ELocationID>
<Abstract>
<AbstractText>Certain plant-associated Proteobacteria sense their host environment by detecting an unknown plant signal recognized by a member of a LuxR subfamily of transcription factors. This interkingdom communication is important for both mutualistic and pathogenic interactions. The
<i>Populus</i>
root endophyte
<i>Pseudomonas</i>
sp. GM79 possesses such a regulator, named PipR. In a previous study we reported that PipR activates an adjacent gene (
<i>pipA</i>
) coding for a proline iminopeptidase in response to
<i>Populus</i>
leaf macerates and peptides and that this activation is dependent on a putative ABC-type transporter [Schaefer AL, et al. (2016) mBio 7:e01101-16]. In this study we identify a chemical derived from ethanolamine that induces PipR activity at picomolar concentrations, and we present evidence that this is the active inducer present in plant leaf macerates. First, a screen of more than 750 compounds indicated ethanolamine was a potent inducer for the PipR-sensing system; however, ethanolamine failed to bind to the periplasmic-binding protein (PBP) required for the signal response. This led us to discover that a specific ethanolamine derivative,
<i>N</i>
-(2-hydroxyethyl)-2-(2-hydroxyethylamino) acetamide (HEHEAA), binds to the PBP and serves as a potent PipR-dependent inducer. We also show that a compound, which coelutes with HEHEAA in HPLC and induces
<i>pipA</i>
gene expression in a PipR-dependent manner, can be found in
<i>Populus</i>
leaf macerates. This work sheds light on how plant-associated bacteria can sense their environment and on the nature of inducers for a family of plant-responsive LuxR-like transcription factors found in plant-associated bacteria.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Coutinho</LastName>
<ForeName>Bruna G</ForeName>
<Initials>BG</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Washington, Seattle, WA 98195.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mevers</LastName>
<ForeName>Emily</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schaefer</LastName>
<ForeName>Amy L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Washington, Seattle, WA 98195.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pelletier</LastName>
<ForeName>Dale A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harwood</LastName>
<ForeName>Caroline S</ForeName>
<Initials>CS</Initials>
<Identifier Source="ORCID">0000-0003-4450-5177</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Washington, Seattle, WA 98195.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clardy</LastName>
<ForeName>Jon</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0003-0213-8356</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Greenberg</LastName>
<ForeName>E Peter</ForeName>
<Initials>EP</Initials>
<Identifier Source="ORCID">0000-0001-9474-8041</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Washington, Seattle, WA 98195; epgreen@uw.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AT009708</GrantID>
<Acronym>AT</Acronym>
<Agency>NCCIH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000081">Acetamides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000628675">N-(2-hydroxyethyl)-2-(2-hydroxyethylamino) acetamide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033902">Periplasmic Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015534">Trans-Activators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>115038-68-1</RegistryNumber>
<NameOfSubstance UI="C064778">LuxR autoinducer binding proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5KV86114PT</RegistryNumber>
<NameOfSubstance UI="D019856">Ethanolamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000081" MajorTopicYN="N">Acetamides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060026" MajorTopicYN="N">Endophytes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019856" MajorTopicYN="N">Ethanolamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033902" MajorTopicYN="N">Periplasmic Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011549" MajorTopicYN="N">Pseudomonas</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015534" MajorTopicYN="N">Trans-Activators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">LuxR homolog</Keyword>
<Keyword MajorTopicYN="Y">ethanolamine</Keyword>
<Keyword MajorTopicYN="Y">plant–microbe interactions</Keyword>
<Keyword MajorTopicYN="Y">quorum sensing</Keyword>
<Keyword MajorTopicYN="Y">transcription activator</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30190434</ArticleId>
<ArticleId IdType="pii">1809611115</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1809611115</ArticleId>
<ArticleId IdType="pmc">PMC6166808</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 1995;64:315-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7574485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Mar;18(3):167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23089307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Aug;13(6):614-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22672649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Aug 22;345(6199):940-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25146292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7183-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21471459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1998 May 28;212(1):77-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9661666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Jul;65(1):121-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17581124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2015 Feb 24;5:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25759807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Jan;188(2):556-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16385046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Sep;17(9):999-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15384490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2001 Jul;11(7):1246-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11435407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2008 Jun;72(2):317-64, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18535149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Feb;75(4):946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19088317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2016 Aug 11;198(17):2318-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27325678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2001;35:439-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11700290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1989 Jul;171(7):4045-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2544568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 21;276(38):35523-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11461929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Nov;174(21):7033-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2011 Jul;21(7):1131-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21483448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16765-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Feb;191(3):890-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Nov;44(11):1185-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14634155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jul;8(4):529-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Aug;25(8):1104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22746827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2010 Jun;62(6):414-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20503434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2018 Feb 20;9(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29463652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2015 Apr 16;5:37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25932456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Aug;79(4):568-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24397856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 31;9(1):e87862</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24498215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jul;77(13):4579-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Sep;79(18):5745-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23851092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Aug 02;7(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27486195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Oct;82(19):6609-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3931078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jan 31;415(6871):545-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11823863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2009 May;155(Pt 5):1377-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1997 Sep 4;1348(1-2):236-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9370338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012 May 15;3(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22589288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Oct;186(20):6885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466042</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
<li>Tennessee</li>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Coutinho, Bruna G" sort="Coutinho, Bruna G" uniqKey="Coutinho B" first="Bruna G" last="Coutinho">Bruna G. Coutinho</name>
</region>
<name sortKey="Clardy, Jon" sort="Clardy, Jon" uniqKey="Clardy J" first="Jon" last="Clardy">Jon Clardy</name>
<name sortKey="Greenberg, E Peter" sort="Greenberg, E Peter" uniqKey="Greenberg E" first="E Peter" last="Greenberg">E Peter Greenberg</name>
<name sortKey="Harwood, Caroline S" sort="Harwood, Caroline S" uniqKey="Harwood C" first="Caroline S" last="Harwood">Caroline S. Harwood</name>
<name sortKey="Mevers, Emily" sort="Mevers, Emily" uniqKey="Mevers E" first="Emily" last="Mevers">Emily Mevers</name>
<name sortKey="Pelletier, Dale A" sort="Pelletier, Dale A" uniqKey="Pelletier D" first="Dale A" last="Pelletier">Dale A. Pelletier</name>
<name sortKey="Schaefer, Amy L" sort="Schaefer, Amy L" uniqKey="Schaefer A" first="Amy L" last="Schaefer">Amy L. Schaefer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001074 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001074 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30190434
   |texte=   A plant-responsive bacterial-signaling system senses an ethanolamine derivative.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30190434" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020